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Solitary-wave solutions to surface equations or two-equation models of film flows are
investigated within the framework of dynamical system theory. The limiting behaviour
of one-humped solitary waves (homoclinic orbits) at large Reynolds numbers is con-
sidered. Their predicted speed is in good agreement with numerical findings. The
theory also explains the absence of solitary-wave solutions to the Benney equation in
the same limit.

1. Introduction
Due to the widespread use of film flows in industrial applications, the stability

of thin-film flows has received much attention, starting with the seminal work by
Kapitza (Kapitza 1948; Kapitza & Kapitza 1949). From a theoretical viewpoint, the
interest of this system stems from the fact that the primary instability is spanwise-
independent (Yih 1955), of long-wavelength, and supercritical. In most relevant flow
regimes, the flow remains close to that of the flat-film solution, called the Nusselt flow,
with thickness h = hN and parabolic velocity profile.

We focus here on liquid films flowing along vertical walls. The usual control para-
meters are then just the Reynolds number R = gh3

N/3ν2 and the Weber number W =
σ/ρgh2

N, comparing inertia to viscous effects, and surface tension to gravity,
respectively. Here g is the gravity acceleration and ρ, ν and σ are the fluid’s density,
kinematic viscosity and surface tension. The proximity to the Nusselt flow is measured
by the so-called film parameter ε scaling the typical slope of the film. In flow regimes
of interest, the cross-stream coherence of the flow is ensured by viscosity whereas
the slope is maintained small enough thanks to surface tension effects. For thickness
fluctuations with wavelength �, the order of magnitude of this parameter can be
obtained through the estimate ρg ∼ σ∂xxxh as hN/� ∼ W−1/3. Following Shkadov
(1977), it is then advisable to rescale the streamwise and cross-stream directions
x and y differently, in order to make this slope of order unity, hence defining the
scale ratio κ =W −1/3. In this process the Reynolds number R is replaced by δ = 3R/κ

that compares inertia to surface tension and viscosity directly. (The reduced Reynolds
number originally introduced by Shkadov was δ/45 due to different numerical scaling
choices.) A second parameter η = W −2/3 measuring the intensity of the streamwise
viscous dispersion is then substituted for the Weber number. When surface tension
is strong, the Weber number is large, so that κ and η are small, making typical
instability wavelengths long and keeping viscous dispersion negligible.

The film’s dynamics is essentially that of isolated large-amplitude solitary waves in
the form of a main hump preceded by smaller capillary ripples, which travel much
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faster than linear waves (Alekseenko, Nakoryakov & Pokusaev 1994; Liu & Gollub
1994). Direct simulation of Navier–Stokes equations with a free surface remains
a formidable task, see e.g. Malamataris et al. (2002). This difficulty motivated the
search for reliable reduced models. The smallness of parameter ε allows a drastic
simplification of the primitive equations (Shkadov 1967, 1977) which, after elimination
of the pressure, yields the so-called boundary-layer (BL) equations. However this
simplification is still not sufficient since these equations retain the same physical
dimensionality as the primitive equations, which focuses the attention on even more
simplified models where the cross-stream dependence is eliminated through averaging
and/or long-wave expansion.

1.1. Surface equations

By performing a gradient expansion of the set of primitive equations, Benney (1966)
obtained a single evolution equation for the film thickness which, using Shkadov’s
notations, is

∂th + 1
3
∂x

{
h3 + 2

35
δ∂x(h

7) + h3∂xxxh
}

= 0. (1.1)

Benney’s equation is the prototype of so-called surface equations, solely involving the
local film thickness h(x, t) and its derivatives. They are derived by integrating the
(exact) continuity equation across the fluid layer:

∂th + ∂xq = 0, (1.2)

where q =
∫ h

0
u dy is the local flow rate. Approximations enter when truncated expres-

sions for q , obtained e.g. through a long-wavelength expansion, are inserted in (1.2).
Numerical simulations of (1.1) demonstrated the occurrence of non-physical blow-

ups of unsteady solutions at finite time and sufficiently large δ (Pumir, Manneville &
Pomeau 1983; Rosenau, Oron & Hyman 1992). Ooshida (1999) however showed that
the long-wavelength expansion could be regularized by applying techniques inspired
from the Padé approximation method, which lead him to

∂th + 1
3
∂x

{
h3 − δ

[
2
7
∂t (h

5) + 36
245

∂x(h
7)

]
+ h3∂xxxh

}
= 0. (1.3)

Comparing inertial terms (with factor δ) of (1.3) with that in (1.1), one can see the
introduction of a new term involving a time derivative and a change of the coefficient
of the original term from 2/35 to −36/245. Ooshida’s equation does not exhibit finite-
time blow-up and solitary-wave solutions can be obtained for all δ but the predicted
amplitudes and speeds differ from the observed values by a factor of order 2–3.†

1.2. Two-equation models

The validity of the formal expansion leading to (1.1) is restricted to δ � 1, as derived
from the value of ε estimated from the cut-off wavenumber ∝

√
R/W , which yields

εR ∼ R3/2/W 1/2 ∼ δ3/2 (Ooshida 1999). That expansion further assumes that the velo-
city field remains strictly enslaved to the evolution of the thickness of the film. Surface
equations are thus not expected to describe wave motions at moderate δ accurately.
An alternative to the single-equation approach was proposed in the seminal work by
Kapitza (1948) and later by Shkadov (1967). Assuming that the velocity profile across
the fluid layer remains parabolic in the wavy regime and averaging the momentum
equation across the film, keeping terms up to order ε along with the dominant surface

† The equation originally derived by Ooshida contained an extra term −η∂x(h
2∂xth) that accounts

for streamwise dissipative effects, but was later shown to have little effect on the amplitude and
speed of the solitary waves (Ruyer-Quil & Manneville 2004).
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tension term, Shkadov obtained

δ ∂tq = h − 3
q

h2
+ δ

[
6

5

q2

h2
∂xh − 12

5

q

h
∂xq

]
+ h∂xxxh, (1.4)

closing the system in h and q by adding the mass conservation equation (1.2).
Shkadov’s model (1.2), (1.4) does not exhibit non-physical blow-ups of its solutions
but, whereas it works quite well for vertical walls, when adapted to moderately inclined
planes it leads to an incorrect prediction for the instability threshold. A refined deriva-
tion based on a systematic weighted-residual expansion of the velocity field on a poly-
nomial basis led us later to overcome this limitation (Ruyer-Quil & Manneville 2000).
An equation similar to (1.4) was obtained but with slightly different coefficients

δ∂tq =
5

6
h − 5

2

q

h2
+ δ

[
9

7

q2

h2
∂xh − 17

7

q

h
∂xq

]
+

5

6
h∂xxxh. (1.5)

When compared to equations (1.1) and (1.3), models (1.2), (1.4) and (1.2), (1.5) account
for inertial effects in a clearly novel way since the local flow rate q(x, t) now has its
own dynamics instead of being enslaved to h(x, t).

1.3. One-humped solitary waves

Experimentally observed solitary waves can travel without deformation at constant
speed for large distances. Such solutions are computed by changing to a moving
frame with coordinate ξ = x − ct , which transforms the partial differential problem
into an ordinary differential problem. Applying this to (1.1) or (1.3) immediately
leads to a single fourth-order differential equation which can be integrated once,
yielding a three-dimensional dynamical system. Within the two-equation formulation,
the same result is obtained but in two steps. First the mass conservation equation (1.2)
becomes −ch′ + q ′ = 0, where primes denote derivatives with respect to the moving
coordinate ξ . This equation can be integrated to yield

q = c h + q0, (1.6)

where q0 =
∫ h

0
(u − c) dy is an integration constant corresponding to the flow rate in

the moving frame. Next the second equation (1.4) or (1.5) is transformed. In all cases,
the following equation is obtained:

1
3
h3h′′′ + δG(h, c)h′ + 1

3
h3 − ch − q0 = 0. (1.7)

In practice, G – to be specified below – contains all the inertial effects (with factor δ),
while the third-order derivative arises from surface tension effects. The integration
constant q0 can be fixed by imposing h ≡ 1 as a solution to (1.7) since h(ξ ) = H

constant, often taken equal to the unperturbed film thickness hN, is indeed a solution
to the problem. Making the changes h �→ Hh, c �→ Cc, q �→ Qq , preserves the structure
of the equation provided that ξ is also rescaled as ξ �→ Ξξ and the control parameter
δ as δ �→ ∆δ. By substitution one is then led to Ξ =H 1/3 and ∆ =H −11/3, whereas
C = H 2 and Q =H 3. Measuring h in units of H , i.e. with the reference unperturbed
solution corresponding to h ≡ 1, leads to

q0 = 1/3 − c, (1.8)

which will be assumed in the following. Our starting point will thus be

1
3
h3h′′′ + δG(h, c)h′ + H(h, c) = 0, (1.9)

where

H(h, c) ≡ 1
3
h3 − ch − q0 = 1

3
(h − 1)(h2 + h + 1 − 3c), (1.10)
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Figure 1. (a) Speed c and (b) maximum height hm as functions of the reduced Reynolds
number δ for the one-hump homoclinic solutions to the Benney equation (solid line), and to
the Ooshida equation (dashed line). Dotted and dash-dotted lines correspond to the Shkadov
model (1.2), (1.4) and to the modified model (1.2), (1.5), respectively. Filled squares are from
simulations of the BL equations (Chang et al. 1996).

and the functions G(h, c) corresponding to the different cases are

Benney equation (1.1): G(h, c) = 2
15

h6,

Ooshida equation (1.3): G(h, c) = 10
21

ch4 − 12
35

h6,

Shkadov model (1.2), (1.4): G(h, c) = 2
5
q2 − 4

5
cqh + 1

3
c2h2

= 2
5
c2 − 4

15
c + 2

45
− 2

15
c2h2,

Model (1.2), (1.5): G(h, c) = 18
35

q2 − 34
35

cqh + 2
5
c2h2

= 1
35

[
18c2 + 2

3
ch − 12c − 2c2h(h + 1) + 2

]
.

The expression for q given by (1.6) using (1.8) has been used to expand G when
needed.

One-humped solitary wave solutions to (1.1), (1.3), (1.2), (1.4) and (1.2), (1.5) have
been computed within the dynamical-systems setting described in the next section
using the continuation software Auto97 and its package HomCont for the computa-
tion of homoclinic orbits (Doedel et al. 1997). The speed c and maximum height hm

of such waves are displayed in figure 1 as functions of δ.
The turning point of the branch corresponding to Benney’s equation signals the

loss of solution for δ greater than δ ≈ 0.986, a value that closely corresponds to
the occurrence of blow-ups of unsteady solutions mentioned previously. By contrast,
Ooshida’s equation (1.3) and models (1.2), (1.4) and (1.2), (1.5) possess a one-humped
solitary wave solution for all values of δ, in agreement with what was obtained
by Chang, Demekhin & Kalaidin (1996) through integration of the much more
cumbersome BL equations. While the asymptotic wave speed of order 2.5 reported in
Chang et al. (1996) should be taken with care† the outcome of Ooshida’s regularized

† The apparent good agreement between results from Shkadov’s model and BL equations is
probably fortuitous owing to limited streamwise resolution of the large-δ BL simulations (only 70
Fourier modes for strongly localized solitary waves).
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equation is clearly less satisfactory than the supposedly more reliable results from
the two-equation models. Indeed, in the three cases the speeds of the solitary waves
saturate but those obtained from (1.3) are a factor of more than 2 smaller than
those obtained from models (1.2), (1.4) and (1.2), (1.5) or the BL results. The waves’
maximum heights hm also grow rapidly in the transition region around δ ∼ 1.5–2 and
continue to increase beyond that range for the models and BL solutions, a trend
which is not reproduced by Ooshida’s solutions, suggesting that the shape of the
waves is also not properly approximated by solutions to (1.3) at large δ.

Two different flow regimes were distinguished by Ooshida (1999): the drag–gravity
regime, which takes place for δ � 1 and where the dynamics is governed by a balance
between the viscous drag at the wall and gravity and surface tension, with inertia
playing the role of a perturbation, and the drag–inertia regime at δ � 1, when inertia
effects are dominant. The rest of this note mainly focuses on the solitary-waves’
asymptotic behaviour in the drag–inertia regime, using the tools of dynamical system
theory.

2. Solitary waves and dynamical system theory
2.1. General setting and drag–gravity regime

Equation (1.9) can be recast as a three-dimensional dynamical system:

U1
′ = U2, U2

′ = U3, U3
′ = −3[δG(U1, c)U2 + H(U1, c)]/U 3

1 , (2.1)

in a phase space spanned by U = (U1, U2, U3) where U1 = h, U2 = h′, U3 =h′′, and
solutions to (1.9) are trajectories in that phase space.

Solitary wave solutions correspond to homoclinic orbits connecting fixed points to
themselves. The fixed points of (2.1) are given by U2 = U3 = 0 and

3H(U1, c) = (U1 − 1)
(
U 2

1 + U1 + 1 − 3c
)

= 0, (2.2)

from which it is seen that U1 = 1 is a solution arising from the scaling convention
for h. Additional roots are given by

U 2
1 + U1 + 1 − 3c = 0. (2.3)

Accordingly, for c > 1/3, i.e. for waves travelling faster than the average speed of the
Nusselt flow as seen from (1.8), there is one supplementary positive solution:

hII ≡ −1/2 +
√

3(c − 1/4), (2.4)

so that (2.1) then admits two fixed points U I = (1, 0, 0) and U II = (hII, 0, 0). The study
below extends the analysis developed by Pumir et al. (1983) for the Benney equation
with δ � 1 to the models introduced in § 1.1 and § 1.2. The case δ � 1 is considered in
the next subsection.

Let us first consider fixed point U I. The dispersion relation governing infinitesimal
perturbations varying as exp(λξ ) is

λ3 + 3δG(1, c)λ − 3(c − 1) = 0. (2.5)

Denoting the roots as λi , i = 1, 2, 3, we have λ1 + λ2 + λ3 = 0. Furthermore, one of
the roots λ1 is real and has the sign of the product λ1λ2λ3 = 3(c − 1), thus is positive
when c > 1 and negative when c < 1. The two others roots are complex conjugate
(real) when

∆I = 4δ3G(1, c)3 + 9(c − 1)2 (2.6)
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Figure 2. Locations of the fixed point height hfp and stability diagram as function of the
wave speed c in the case of the Benney equation (1.1).

is positive (negative). In the same way, at the second fixed point U II, we obtain

h3
IIλ

3 + 3δG(hII, c)λ − 3
(
c − h2

II

)
= 0, (2.7)

and the sum of the roots is again zero. One of roots is real and has the sign of c − h2
II,

hence negative when c > 1, since c > hII implies c − h2
II = c − (3c − 1 − hII) = (1 − c) +

(hII −c) < 0. By performing the transformation that allowed us to rescale the equation
in order to reset hII to one, it can be seen that the sign of

∆II = 4δ3G(hII, c)
3 + 9h3

II

(
c − h2

II

)2
(2.8)

is the same as that of ∆I, which finishes to link the properties of U II to those of U I,
just exchanging the dimensions of their stable and unstable manifolds.

The case of the Benney equation (Pumir et al. 1983) is the easiest one, thanks to
the simplicity of the corresponding expression G(h, c) = 2

15
h6, independent of c. Since

G is always positive, both fixed points have one real root and one complex pair for
all c. As shown in figure 2, they are both saddle-foci. An exchange of properties is
seen to take place at c = 1, which makes the case degenerate with hI =hII = 1. As
proven by Gaspard (1993), the existence of homoclinic trajectories for the Benney
equation with c ≈ 1 when δ � 1 stems from the perturbation of conditions ∆I = 0 and
c =1 which define a codimension-two bifurcation at a double stationary-oscillatory
instability with eigenvalues 0, and ± iω. Since G(1, c) is positive, when c > 1 we have
λ1 > 0 while λ2,3 are complex conjugate with negative real values. The homoclinic orbit
thus starts from U I along the one-dimensional unstable manifold Wu

I in a monotonic
way and returns to the fixed point by spiralling along the two-dimensional stable
manifold Ws

I . At finite but small δ such an orbit can be understood as coming from
the homoclinic bifurcation of a limit cycle arising from the Hopf bifurcation of U II

for c > 1, then approaching and finally touching U I as its length is increased. Because
hII > hI = 1, the corresponding wave profile resembles a hump preceded by ripples
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Figure 3. Typical solitary wave solution to model (1.2), (1.5) at large δ, here δ = 10.
(a) Trajectory in the phase space spanned by U = (U1, U2, U3) ≡ (h, h′, h′′). The spiralling
behaviour towards the fixed point U I has been truncated in order to point out the monotonic
starting of the trajectory along Wu

I . (b) Profile of the wave h = h(ξ ) in the frame moving at
speed c, with an indication of the critical level hc to be defined in the text.

corresponding to the spiralling return to U I but the lack of homoclinic orbit for δ ∼ 1
remains unexplained by these considerations.

In the drag–gravity regime, the structure of homoclinic orbits corresponding to soli-
tary waves is easily seen to follow directly from the analysis developed for the Benney
equation since one can check that G(1, c) > 0 for the Ooshida equation, as well as for
the two-equation models (1.2,1.4) and (1.2,1.5). Accordingly, ∆I is positive and the
signatures of the fixed points are the same as for the Benney equation: fixed point
U I is again a saddle-focus with a one-dimensional unstable manifold. Homoclinic
orbits are then expected by continuity with the case of the Benney equation since
the structure of the latter is recovered from these more elaborate models in the long-
wavelength limit.

2.2. Asymptotic behaviour in the drag–inertia regime

As can be seen from figure 1, the speeds of the one-humped solitary wave solutions
to Ooshida’s equation (1.3) and to the two-equation models (1.2), (1.4) and (1.2),
(1.5) saturate as δ increases. This is precisely what we wish to predict from a direct
analysis of the dynamical system in the drag–inertia regime, δ � 1, while attempting
to construct the corresponding homoclinic orbits. As seen in figure 3, these trajectories
have three different parts: two extend the linearized dynamics around U I to the weakly
nonlinear regime and the third, in-between, accounts for the strongly nonlinear region
away from U I where they bend back. In the course of our derivation, we will need
only two empirical results: (i) that apparently smooth one-hump solitary waves do
exist in the limit δ → ∞, with a monotonic rear and an oscillatory front, and (ii) that
their speeds are larger than 1.

In the limit δ → ∞, the linearized dynamics around U I is controlled by (2.5). Setting
λ1 = 2σ and λ2,3 = −σ ± ω, we obtain

ω2 − 3σ 2 = 3 δ G(1, c) and 2σ (σ 2 + ω2) = 3(c − 1).

Assuming c > 1 as suggested by the empirical results, and thus G(1, c) > 0, we have
ω ∼ δ1/2

√
3G(1, c) and σ ∼ δ−1(c − 1)/2G(1, c). Accordingly, the escape from U I along
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the one-dimensional unstable manifold Wu
I is slow and monotonic while the conver-

gence toward U I along its two-dimensional stable manifold Ws
I happens to be a slow

relaxation of fast oscillations, in full agreement with empirical results.
When the trajectory has left the immediate vicinity of U I, one must return to the

complete system. Focusing on the δ � 1 range it may be preferable to rewrite (1.9) as

G(h, c) h′ = −1

δ

[
1
3
h3h′′′ + H(h, c)

]
, (2.9)

with H(h, c) given by (1.10). In the inviscid limit, δ = ∞, one finds G(h, c)h′ = 0, so
that one can define the ‘critical level’ as the root in h of

G(hc, c) = 0, (2.10)

at given c. This condition does not select the value of c, so let us return to the
complete equation for δ < ∞ in the vicinity of h = hc whatever its value.

The homoclinic trajectory starts along the one-dimensional unstable manifold of
U I, with linear eigenvalue 2σ ∼ δ−1 � 1. The dynamics along the unstable manifold
can be studied by changing to the slow variable ξ̃ = ξ/δ, which leads to (2.9) being
rewritten as

G(h, c)h′ = −
[
H(h, c) + 1

3
δ−3h3h′′′], (2.11)

where the prime now denotes differentiation with respect to ξ̃ . The last term in (2.11) is
negligible along the first part of the trajectory corresponding to ξ (or ξ̃ ) coming from
−∞, i.e. the rear of the wave. So, let us develop the argument at dominant order in δ:

G(h, c)h′ = −H(h, c). (2.12)

At given c, G(1, c) > 0 and G(h, c) decreases as h increases, which is easily seen from
the expressions given earlier in the three cases of interest†. The dependent variable h

increases with ξ̃ as long as h′ > 0. Since H(h, c) < 0 for 1 < h < hII where hII is given
by (2.4), h′ is positive as long as h<hII and h < hc. If for the considered value of c,
hII < hc, no singularity occurs and h generically goes through a maximum, so that
it cannot reach hc at least in the rear part of the trajectory, which contradicts the
assumption that we are considering one-hump solitary waves. On the other hand, if
hc is reached first, then a singularity takes place with h′ diverging at ξ̃ = ξ̃c, which now
contradicts the assumption of smooth solitary waves derived from empirical evidence.
The only possibility to remove the singularity is thus that hII = hc, in which case G
and H are both zero for the same value of h, which selects the wave speed c at
dominant order in δ.

Solving

G(hII, c) = 0 (2.13)

for c with hII given by (2.4) yields the asymptotic values c∞ reached by c when the
limit δ → ∞ is taken. The values obtained for (1.3), (1.2), (1.4) and (1.2), (1.5) are

Ooshida’s equation (1.3): c∞ = 9
841

(83 + 5
√

141) ≈ 1.524,

Shkadov’s model (1.2), (1.4): c∞ = 1 + 1/
√

6 +
√

1/2 +
√

2/3 ≈ 2.556,

Model (1.2), (1.5): c∞ = 1
6
(9 +

√
43 + 2

√
37) ≈ 2.738,

in good agreement with the value obtained from the numerics (figure 1a). Considering
the Benney equation (1.1), condition (2.13) can never be achieved since c is not present

† The result is immediate for Shkadov’s model and straightforward for model (1.2), (1.5) since
c > 1 is assumed. For the Ooshida equation the decrease only occurs for h2 > 25

27
c but this does not

change the argument.
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Figure 4. Convergence of the speed of solitary waves toward their asymptotic values c∞ as
a function of δ. (a) Ooshida’s equation (1.3). (b) Shkadov’s model (1.2), (1.4). (c) Model (1.2),
(1.5).

in the expression for G, which explains the lack of solitary wave solutions at large
Reynolds numbers.

Now, when the limit δ → ∞ is not taken but δ just assumed to be large, the singu-
larity in (2.11) remains at h = hc defined by G(h, c) = 0. That singularity will be
avoided again provided that the right-hand side is zero when h = hc. In the region
h ∼ h∞ where h∞ = hII(δ → ∞) as determined above, the shape of the solution has no
reason to change rapidly as δ increases so that one can generically expect h′′′ ∼ h′′′

∞,
where h′′′

∞ = 0 is the asymptotic value of the third derivative of h in ξ̃ (the slow
variable). The condition replacing (2.13) is thus

G(hc(δ), c(δ)) = Kδ−3 (2.14)

where K is a numerical constant depending on h∞ and h′′′
∞. Looking for the solution

to equations (2.10) and (2.14) through their expansion around (h∞, c∞) yields

c − c∞ ∝ δ−3, (2.15)

a convergence rate which is verified well by the numerics as shown in figure 4.
While explaining the asymptotic behaviour of the speed of one-hump solitary

waves, the argument says nothing about how the trajectory bends back towards U I,
so it cannot justify their existence that has thus to be taken for granted. This existence
property is likely to be more difficult to prove than in the small-δ range where one
can make use of Gaspard’s result. In this respect, it should be noted that the critical
value hc introduced in the derivation makes sense only on the slow rear part of the
wave, i.e. for the value of ξ̃ which achieves the critical condition for the first time
when increasing from −∞, since h = hc also occurs at least once in the fast oscillating
front part when h decreases from its maximum value hm >hc. However the dominant
term in the equation is then h′′′ and to deal with it one has to turn to an expression
for the dynamics in terms of a fast variable ξ̂ = ξ

√
δ and no singularity occurs when

h ∼ hc. The third derivative term is far from singular as long as h is bounded away
from zero. Were this no longer the case, steady-state waves would no longer exist
and time-dependent solutions would experience blow-up, but this is irrelevant to the
models considered here, as inferred from computational evidence.

3. Summary and conclusion
We have considered one-humped solitary wave solutions to one-equation models

(1.1) and (1.3), and depth-averaged two-equation models (1.2), (1.4) and (1.2), (1.5)
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using the tools of dynamical system theory. These solutions all derive from similar
dynamical systems, differing one from another by the expression for the inertial terms.
Analytic expressions for their speed c∞ have been obtained for the three last models
and the expected cubic convergence c − c∞ ∝ δ−3 has been verified. The lack of one-
humped solitary waves at large δ for the Benney equation (1.1) has been attributed
to the absence of freedom in the expression for G to match condition (2.13).

In view of comparisons with experiments, the wave profile with fast oscillations
preceding the hump shown in figure 3 may seem unrealistic, while such oscillations
are known to be strongly damped by viscous dispersion effects. It is thus essential to
observe that the result obtained here in the restricted case of films over vertical planes
without viscous dispersion extends to the general case, provided that a single equation,
of possibly higher order in time, can be obtained through the procedure leading to
(1.9). Models derived by us (Ruyer-Quil & Manneville 2000) have been shown to yield
results in good agreement with experiments at moderate Reynolds numbers for which
two-dimensional solitary waves are indeed observed. This validation is therefore an
important supplementary step towards the theoretical understanding of the dynamics
of surface waves and the secondary patterning of flows over inclined planes.
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